
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Animation

Animation

 AnimatedVisibility

 Value-based animations (animate*AsState)
◦ Color changes (animateColorAsState)

◦ Content size changes (animateDpAsState)

◦ Any float value changes (animateFloatAsState)

 Run function when animation finishes

 NavHost – Navigating between screens

© 2024 Arthur Hoskey. All
rights reserved.

AnimatedVisibility

AnimatedVisibility

 Perform an animation when making a composable visible or
invisible.

 Can run an animation when entering or exiting.

 Can control the speed of the animation.

 Can control which direction the composable comes on
screen from.

 Here is a link with descriptions of various parameters to
use:
https://developer.android.com/develop/ui/compose/animat
ion/composables-modifiers

© 2024 Arthur Hoskey. All
rights reserved.

https://developer.android.com/develop/ui/compose/animation/composables-modifiers
https://developer.android.com/develop/ui/compose/animation/composables-modifiers

AnimatedVisibility - enter

AnimatedVisibility Example - enter
var isVisible by remember { mutableStateOf(false) }

Column(modifier = Modifier.padding(innerPadding)) {

 Button(

 onClick = { isVisible = !isVisible }

) {

 Text("Show/Hide Box")

 }

 AnimatedVisibility(

 visible = isVisible,

 enter = slideInHorizontally(),

 modifier = Modifier.fillMaxWidth().weight(1f)

) {

 Box(modifier = Modifier.background(Color.Blue))

 }

} // end - Column

© 2024 Arthur Hoskey. All
rights reserved.

Assumes the Column is inside

a Scaffold with a parameter

named innerPadding (makes

content start below toolbar)

Button toggles the value

of the isVisible variable

Set how it enters (becomes visible).

This will enter horizontally.

When the value of isVisible changes a recomposition

occurs for the AnimatedVisibility composable

1f weight will cause it to fill

the open space in the column

since no siblings in the

column specified a weight

(the Button did not specify a

weight)

The Box is a child of

AnimatedVisibility. The Box's

visibility will be animated.

AnimatedVisibility - exit

AnimatedVisibility Example - exit
var isVisible by remember { mutableStateOf(false) }

Column(modifier = Modifier.padding(innerPadding)) {

 Button(

 onClick = { isVisible = !isVisible }

) {

 Text("Show/Hide Box")

 }

 AnimatedVisibility(

 visible = isVisible,

 exit = slideOutHorizontally(),

 modifier = Modifier.fillMaxWidth().weight(1f)

) {

 Box(modifier = Modifier.background(Color.Blue))

 }

} // end - Column

© 2024 Arthur Hoskey. All
rights reserved.

Set how it exits (becomes invisible).

This will exit horizontally.

AnimatedVisibility Options

AnimatedVisibility Options

 Set duration of animation. Tween creates an animation
specification (the tween name comes from "between" because it
is animating between values). The value passed to tween here is
the duration in milliseconds (2 seconds).

enter = slideInHorizontally(tween(2000))

 Slide in vertically.

enter = slideInVertically()

 Slide out vertically.

exit = slideOutVertically()

© 2024 Arthur Hoskey. All
rights reserved.

Value-based Animations

Value-based Animations

 Perform an animation when a single value changes.

 For example, animate a color value change.

 animate*AsState – There are a set of functions where the
* is replaced with some property. For example:
◦ animateColorAsState

◦ animateDpAsState

◦ animateFloatAsState

© 2024 Arthur Hoskey. All
rights reserved.

animateColorAsState

animateColorAsState

 Performs an animation when the color value changes.

var color by remember { mutableStateOf(Color.Green) }

val colorAsState: Color by animateColorAsState(

 color,

 animationSpec = tween(2000)

)

// Use colorAsState in a composable

Box(

 modifier = Modifier

 .background(colorAsState)

 .size(64.dp)

)

// Set the value of color somewhere else (for example on a button click)

color = Red

© 2024 Arthur Hoskey. All
rights reserved.

Animation will take 2 seconds

The animation will execute when

the value of color changes

Box uses the color value in the colorAsState

animation. It will recompose each time the

value changes. As the animation progresses

the color value will keep changing and it will

keep recomposing.

The colorAsState animation uses the color

variable value. When the value of color

changes the animation is triggered.

animateDpAsState

animateDpAsState

 Performs an animation when the dp value changes.

var dp by remember { mutableStateOf(64.dp) }

val dpAsState by animateDpAsState(

 dp,

 animationSpec = tween(durationMillis = 2000)

)

// Use dpAsState in a composable

Box(

 modifier = Modifier

 .background(Blue)

 .size(dpAsState)

)

// Set the value of dp somewhere else (for example on a button click)

dp = 128.dp

© 2024 Arthur Hoskey. All
rights reserved.

Animation will take 2 seconds

The animation will execute

when the value of dp changes

Box uses the dp value in the

dpAsState animation

The dpAsState animation uses

the dp variable value

animateFloatAsState

animateFloatAsState

 Performs an animation when the float value changes.

 The rotate method is being used (takes a float).

var rotateAngle by remember { mutableStateOf(0f) }

val rotateAngleAsState by animateFloatAsState(

 rotateAngle,

 animationSpec = tween(durationMillis = 2000)

)

// Use rotateAngleAsState in a composable

Box(

 modifier = Modifier

 .rotate(rotateAngleAsState)

 .background(Blue)

)

// Set the value of rotateAngle somewhere else (for example on a button click)

rotateAngle = 45f

© 2024 Arthur Hoskey. All
rights reserved.

Animation will take 2 seconds

The animation will execute when

the value of rotateAngle changes

Box uses the rotateAngle value in the

dpAsState animation. IMPORTANT!

Make sure to call rotate first in the

modifier

The animateFloatAsState animation

uses the dp variable value

Running Function When Animation
Finishes

Run Function When Animation Finishes

val animationFinished: (Color) -> Unit = {

 Toast.makeText(context, "Animation finished", Toast.LENGTH_SHORT).show()

}

var color by remember { mutableStateOf(Blue) }

val colorAsState by animateColorAsState(

 color,

 animationSpec = tween(

 durationMillis = 2000,

 easing = LinearOutSlowInEasing

),

 label = "color animation",

 finishedListener = animationFinished

)

© 2024 Arthur Hoskey. All
rights reserved.

NavHost – Animating Between Screens

NavHost – Animating Between Screens

 Show an animation when navigating between screens.

 Use the enterTransition and exitTransition parameters.

NavHost(navController=navController,

 startDestination = "MainScreen",

 enterTransition = {

 slideIntoContainer(AnimatedContentTransitionScope.SlideDirection.Start,

 tween(500))

 },

 exitTransition = {

 slideOutOfContainer(AnimatedContentTransitionScope.SlideDirection.Start,

 tween(500))

 },

 modifier = modifier)

{

 composable(route="MainScreen") {

 MainScreen(navController)

 }

 composable(route="OtherScreen") {

 OtherScreen(navController)

 }

} // end - NavHost

© 2024 Arthur Hoskey. All
rights reserved.

enterTransition – Animation for going to a screen

exitTransition – Animation for leaving a screen

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Animation
	Slide 3: AnimatedVisibility
	Slide 4: AnimatedVisibility - enter
	Slide 5: AnimatedVisibility - exit
	Slide 6: AnimatedVisibility Options
	Slide 7: Value-based Animations
	Slide 8: animateColorAsState
	Slide 9: animateDpAsState
	Slide 10: animateFloatAsState
	Slide 11: Running Function When Animation Finishes
	Slide 12: NavHost – Animating Between Screens
	Slide 13: End of Slides

